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A Note on the Semi-Infinite Programming 
Approach to Complex Approximation 

By Roy L. Streit and Albert H. Nuttall 

Abstract. Several observations are made about a recently proposed semi-infinite programming 
(SIP) method for computation of linear Chebyshev approximations to complex-valued func- 
tions. A particular discretization of the SIP problem is shown to be equivalent to replacing the 
usual absolute value of a complex number with related estimates, resulting in a class of 

quasi-norms on the complex number field C, and consequently a class of quasi-norms on the 
space C(Q) consisting of all continuous functions defined on Q C C, Q compact. These 
quasi-norms on C(Q) are estimates of the Loo norm on C(Q) and are useful because the best 
approximation problem in each quasi-norm can be solved by solving (i) an ordinary linear 
program if Q is finite or (ii) a simplified SIP if Q is not finite. 

Glashoff and Roleff [1] solve a semi-infinite program (SIP) which is shown to be 

equivalent to the linear approximation problem for functions in C(Q), where C(Q) 
is the space of complex-valued continuous functions on a compact (and not 

necessarily finite) subset Q of the complex plane C and is equipped with the uniform 

(Lo) norm 

(1) 1f11 f 0 = max If(z)I 
zCQ 

Their method is a two-step procedure: the first step applies the usual simplex 
method of linear programming to solve a discrete approximation of the SIP; the 
second step uses the end result of the first step as the initial starting point in a 
Newton-Raphson iteration to solve a certain system of nonlinear algebraic equations 
whose solution (if feasible) is a solution to the linear approximation problem 

(Problem 1 below). The purpose of this note is to make some observations about the 
linear program of their discrete first step, which closely connects its solution with the 
solution of the approximation problem. A knowledge of the SIP definition and 
solution method is not needed to understand the results presented here. The 
interested reader is referred to [1], [2], [3], and to their bibliographies. We point out 
that Theorems 1 and 2 were first proved in [4], where a method identical to the first 
step of Glashoff-Roleff's procedure for finite Q was discovered independently of 
knowledge of [1] and of semi-infinite programming. Readers interested in practical 
examples and an engineering application of linear complex approximation are also 
referred to [4]. 
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Let h 1(z), . . , hn(z) and f(z) be given functions in C(Q). For any set of complex 
parameters a = {aj,...,an)}, define 

n 

(2) L(a; z) - : akhk(Z). 

k=1 

Problem 1. Compute a set of complex parameters a* = {a*,... ,a*} such that, for 
all parameter sets a, 

(3) 1I - L(a*; z)l ,0 f -] -L(a; z)lo 

We set 

(4) En(f) f l- L(a*; z)II0. 

Let p > 2 be a positive integer. Define the angles 

Oj= VO - O)/p; j=- 1, 2,...,~2p, 

and let Sp = (0j). Define, for any complex number z, 

(5). . Z Ip = max { Re(z) cos Oj + Im(z) sin 0j. 

It may be readily verified that: 
(i) I zlp > 0 and Izlp = Oif and only if z 0. 

(ii) I z + w lp <I z lp + Iw lpfor all complexz and w. 

(iii) Given a complex, I az Ip = I a I I z Ip for all z if and only if arg a E Sp. 
(iv) For a and an complex, I -z = I z Ip, lima ` anZ Ip = 0, and limlzl,lo alzn Ip 

=0. 

Thus z Z Ip is not a norm on C because (iii) is not sufficiently strong; however, it is 
a quasi-norm because of (i), (ii), and (iv). See [5, pp. 30-32]. From the well-known 
identity 

(6) lzl= max {Re(z)cosO+Im(z)sin0}, 

it follows that I z lp < I z I . In addition it can be shown that 

(7) IzIp IzI<Izlpsec () p > 2, 

for all complex z. To see (7), it is helpful to visualize the set of all z in C such that 

Z Ip = I as an equilateral polygon of 2p sides whose inscribed circle is the unit circle 

IZL= 1. 
It is easy to verify that 

(8) 11 f li p-maxlf(z)IP 

is a quasi-norm on C(Q) for each integer p ~> 2. Further, from (7), 

(9) ~~~~~~11 f lip < 1I f 11 m < 11 f lip sect 2p ) 

We now define a new (partially) discretized version of Problem 1. 
Problem 2. Fixp > 2. Compute a set of complex parameters a** = (a*, ... ,an} 

such that, for all parameter sets a, 

(10) llf- L(a**; z)11p < llf- L(a; z)11P. 
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We set 

(1) Enp(f) f ll-L(a**; z)llp. 

THEOREM 1. Enp(f ) < En(f) Enp(f )sec(2'). 

Proof. We have 

Enp(f) = If- L(a*; z)llp < lf- L(a**; z)IIp < lf- L(a*; z)II= E,1(f) 

f -lfL(a**; z)llK s If-L(a**, z)Ip sec p)= Enp(f )sec( 72p) 

THEOREM 2. En(f ) < 1I f- L(a**; z)llIo < En(f )sec( ). 

Proof. 
/ T 

En(f) = lif -L(a*; z)ll,,, < llf -L(a**; z)ll,,, < lif -L(a**; z)llpsect 

< llf-L(a*; z)I1psec(2p) < En(f)sec( 2 

COROLLARY 1. Enp(f ) < IIf- L(a**; z)llI, A Enp(f)sec(2p) 

COROLLARY 2. For each p > 2, En(f) 0 if and only if Enp(f 0. 

COROLLARY 3. If En(f ) #4 0, 

I1f - L(a**; z)II,, - EP(f 7.2 Ii\ P-~-0 (12) 0 <1(f) 2 + P->oo 

and the upper bound is independent of the compact set Q, n, f, and the functions 
hl,. ... ihn- 

Proof. The indicated ratio is bounded above by the constant -1 + sec(2p). 
It is not necessary that the domain of approximation Q be a subset of the complex 

plane C. All that is required is that f and h1,. ..,hn be defined on a common domain 
Q and that a solution to Problem 1 exists. 

If the point set Q is not finite, then both Problems 1 and 2 can be readily 
transformed into linear SIP's with linear objective functions and infinitely many 
linear constraints and then can be solved in the manner of Glashoff and Roleff [1]. 
The difference is that, for Problem 1, there is one constraint for each element of the 
Cartesian product S X Q, where S {71 in C: I 1I 11; whereas for Problem 2, 
there is only one constraint for each element of Sp X Q, where Sp =-, in C: 
'q2p 1-). It can happen in certain applications that the bounds proved above show 
that Problem 2 is adequate for some fixed p : 2. The numerical solution procedures 
of Glashoff and Roleff may then be appropriately, and potentially significantly, 
simplified. 

On the other hand, if Q is finite, Problem 2 becomes an ordinary linear program, 
although Problem 1 remains an SIP. The finite Q case is precisely the first step of 
the Glashoff and Roleff method for solving Problem 1. It is not hard to see that, for 
Q =.z. . , Zm} C C, Problem 2 may be reformulated as solving an overdetermined 
system of mp real linear algebraic equations in 2n real unknowns in the usual 
Chebyshev (lo) norm. Full details for setting up the linear equations can be found in 

[4]. (This formulation works for any choice of T t-k} provided only that 0k E T if 
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and only if Sk + X E T.) This real system may be written in the following block-par- 
titioned form: 

R cos O + S sin O1 R sinO 1-S cos1 [i] u cos 6 + v sin 6 
Rcos 02 + S sin 02 I R sin02 SCO2 UCOS62 + V sino 0 

(13) 

R cos 6 + S sin 6 R sin O S cos 6 u cos 6 + v sin 6 pi P I P 
L 

P P 

where we define 

x [Re(ak)] E R'l y =LmAk) E R= 

u 
- 

[RetA (Zk ))I E R ,V I'M fIt(Zk )]E R 

and the two m X n matrices 

R = [k] =[ Re(hk(ZJ))], S j[sk] 4[Im(hk(zJ))]- 

Computer CPU time and storage requirements may present severe practical limita- 
tions on the numerical solution of (13) in certain problems of genuine interest. See 
Streit and Nuttall [4] for an antenna array example with n = 44, p = 8, and 
m = 501 which required 1262 simplex iterations and 179 minutes on the DEC VAX 
11/780 to solve (13) using the general purpose algorithm [6]. If, however, the special 
structure of (13) is exploited, very significant reductions in both time and storage 
requirements are possible; see [7]. 

At least two situations might arise where the effective use of the structure of (13) 
in its solution would be important. First, the Glashoff-Roleff method for any given 
Q requires the solution (by Newton-Raphson or any other workable iterative 
method) of a nonlinear system of algebraic equations. If the initial point is not 
sufficiently good, then this procedure either does not converge or it converges to a 
nonfeasible (hence, incorrect) point. Since initial points are constructed by solving 
(1 3), it is conceivable that very large systems may have to be solved (even for small 
n) to get a sufficiently good initial point. The other reason for studying the special 
structure of (13) is simply that n may be very large to begin with. In the kind of 
applications mentioned in [4], it would not be at all unreasonable to find n > 100. 
Even for small p, the system (13) is then very large. Either case presents an 
interesting problem with a large 100% dense linear program having special structure, 
instead of the more typical situation of a large sparse linear progranm having 
relatively little special structure other than sparsity. 

Solving the overdetermined system (1 3), while requiring nonnegative residuals, can 
have interesting geometrical interpretations. For example, take p 2 so that , 0 
and 02 =/2. Thus, the 2m components of the residual vector of (13) are precisely 
the real and imaginary parts of the complex error e(z) f f(z) - L(a; z) evaluated 
at all m data points. Requiring nonnegative residuals means that we have forced the 
error curve e(z) to lie entirely in the first quadrant of the complex plane. Further- 
more, it is easy to see that we may force e(z) to lie in any convex wedge-shaped 
sector Qll of the complex plane by making appropriate alternative choices of the two 
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angles Oland 02. Further exploration of this idea shows that upper and lower bounds 
for the error Wn( f ) defined by 

WJf )-i(nf) m max lf(z) - L(a; z) I 
aEEC' zOQ 

subject to: f(z) - L(a; z) E CS, z E Q, 

can be obtained in terms of Wpf( f ) defined by 

W.V(f min max lf(z) - L(a; z) I 
ae-C' zEQ 

subject to: f(z) - L(a; z) E QtS, z E Q. 

This technique requires an appropriately modified set of angles 01,..., 02P A 
solution of WJp(f f) can then be found numerically by computing the loo solution of 
an overdetermined system of the form (13) with the additional requirement of 
nonnegative residuals. 

LEMMA. Let Q be finite. The 2n columns of the coefficient matrix in (13) are linearly 
dependent (over the real number field) if and only if the n functions {h 1,... hn } are 
linearly dependent on Q (over the complex number field). 

Proof. There exist complex numbers ak = Xk + iyk, 1 S k < n, not all zero, 
satisfying ll kakhk I I = 0 if and only if II kakhkIIp = 0. This latter equation is 
true if and only if 

max Re( 2 akhk(z)) + iIm( E akhk(z)) = , 
ZGQ k=l k=l p 

which holds if and only if, for each zt E Q and 0j E Sp (1 < j < p), 

( xkRe hk(Zt)-YkIm hk(zt) )cos 0 

+ 

(k 

xkImhk(zt) +ykRehk(zt)) 

sin O 0. 

Rearranging and using the notation of (13) gives 
(Rcos j + Ssin O)x + (Rsin0j - Scos0O)y = 0, j 1,... 

which means that the columns of the coefficient matrix in (13) are linearly depen- 
dent. This completes the proof. 

THEOREM 3. Let Q contain m < 2n distinct points, let the functions .h... ,hn} be 
linearly independent on Q, and let a** satisfy (10) where p > 2. Then 

(14) f- L(a**, z)II = Enp(f )sec( )I 

Proof. Iff is linearly dependent on h1,... , hn, then En( f ) 0 O and, from Corollary 
2, Enp( f ) = 0 and (14) is trivially true. Suppose then that f is linearly independent 
of hl,. . . ,hn. Let a** satisfy (10). Then a** is a Chebyshev (loo) solution of the 
system (13), and the maximum residual has magnitude Enp(f)>O. From the 
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preceding Lemma, the rank of the coefficient matrix in (13) is 2n. Hence there exists 
[8, p. 29] another solution a of (13) such that 

Ilf-L(a; z)p = Enp(f 

and a subset of at least 2n + 1 of the mp equations (13) has residuals equal in 
magnitude to Ep( f ). (We cannot take a' = a** in general, because we have not 
assumed that the coefficient matrix in (13) satisfies the Haar condition for matrices.) 
Now these 2n + 1 extremal equations must be distributed among the m < 2n points 
of Q. Therefore, at least one point z in Q is assigned at least two equations. 

Claim. No point in Q can be assigned more than two extremal equations. Note 
first that the residuals of the p equations in (13) corresponding to a given point z in 
Q are precisely 

rj =A cos Oj + Bsin O, jl,...,p, 

where A and B are the real and imaginary parts of f(z) - L(a'; z), respectively. Let 
K(z) denote the set of indicesj of the extremal equations assigned to the point z. If 
K(z) is not empty, then the equations 

(15) IAcosOj +BsinfOj=Enp(f) j E K(z), 

must hold simultaneously. Since Enp( f) > 0, it is clear that, if K(z) contains more 
than two indices, the system (15) is inconlsistent. This proves our claim. 

Thus, let z be a point in Q which is assigned two extremal equations. Let 
K(z) ={j, k} with]j # k. Then the equations (15) imply 

I A + iB I = Enp( f )sec(4/2), 

where 0 is the smallest angle measured between the four angles {O0, Ok Oj + Z O,k + 

r}. Since Theorem 1 cannot be violated, we must have r = 17/p. This concludes the 
proof. 

If the coefficient matrix in (13) satisfies the Haar condition, then the norm (14) is 
attained for at least t = min{2n + 1 - m, m} distinct points z in Q. In this case, 
a = a**, so every point having two of the 2n + 1 extremal equations has the 
residual (14). There must be at least t such points, considering the claim established 
in the proof of Theorem 3. 
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